附件2:

水利工程学院"课程思政"教学设计

授课教师	职保平	教研室	水电站动力设备			
授课专业	水利水电建筑工程	课程名称	水电站			
授课内容	水电站电能生产过程和特点					

一、教学目标

- 1. 知识目标
- 1) 熟练掌握水电站电能生产过程
- 2) 熟练掌握水电站的出力和发电计算
- 3) 掌握水力发电的特点
- 2. 素质目标

培养学生良好的职业道德

3. 思政元素

中国梦、富强、敬业

二、教学内容

- 1. 水电站电能生产过程
- 2. 水电站的出力和发电计算
- 3. 水力发电的特点

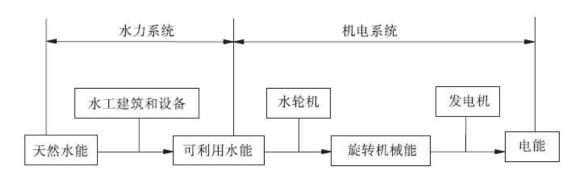
三、教学方法与举措

1. 案例分析

介绍中国水电资源开发利用现状及前景,讲述专业领军人物的重要贡献,培养学生认真严谨的学习与工作态度;树立职业使命感与责任感,为其今后从事相关专业工作打下正确的思想基础

- 2. 讨论法
- 3. 讲解法

四、教学过程


- 1. 课前: 教师利用云课堂提前布置任务, 学生自主学习
- 1)阅读关于水电站大国工匠的资料与相关事迹(教师上传云课堂+学生自主查询)
 - 2) 预习水电站电能生产过程及特点,并搜集相关案例
 - 2. 课中:
 - 1) 导入案例、分析情景"看"(5分钟)

结合中国建成的最大水电站——三峡水电站,及雅砻江上水头最高、装机容量最大,且四条引水隧洞为世界上埋深最深、规模最大的引水隧洞群的电站——锦屏二级水电站进行讲解,增强专业自豪感。

- 2) 引发思考、凝练新知"想"(30分钟)
- a) 中国水电开发现状及前景(10分组)

世界	水电站名称	国家	装机容量 <i>万KW</i>	年发电量 亿KWH	发电 日期	河流
排名						
1	三峡	中国	2250	847	2003	长江
2	伊泰普	巴西/巴拉圭	1400	900	1983	巴拉那河
3	溪洛渡	中国	1386	571	2014	金沙江
4	白鹤滩	中国	1250	640	2018	金沙江
5	乌东德	中国	1020	387	2020	金沙江
6	古里	委内瑞拉	910	510	1968	卡罗尼河
7	图库鲁伊	巴西	837	324	1984	托坎廷斯河
8	向家坝	中国	775	307	2012	金沙江
9	拉格兰德二级	加拿大	732	358	1979	拉格兰德
10	大古力	美国	649	203	1942	哥伦比亚
11	萨扬舒申思克	俄罗斯	640	235	1978	叶尼塞河
12	龙滩	中国	630	187	2007	红水河
13	克拉斯诺雅尔思科	俄罗斯	600	204	1967	叶尼塞河
14	糯扎渡	中国	585	239	2012	澜沧江
15	丘吉尔瀑布	加拿大	542	345	1972	丘吉尔河
16	锦屏二级	中国	480	242	1967	雅砻江
17	布拉茨克	俄罗斯	450	226	1967	安加拉河
18	小湾	中国	420	185	2009	澜沧江
19	拉西瓦	中国	420	102	2009	黄河
20	二滩	中国	330	170	1998	雅砻江

b) 讲解水电站电能生产过程(15分钟)

水轮机+水轮发电机=水轮发电机组(机组)

c) 讲解水电站出力及发电量计算(5分钟)

$$N = 9.8 \, 1 \eta_T Q (H_0 - \Delta h) = 9.8 \, 1 \eta_T Q H$$

- d) 讲解水力发电特点
 - (一) 水能的再生
 - (二) 水资源可综合利用

- (三) 水能的调节
- (四) 水力发电的可逆性
- (五) 机组工作的灵活性
- (六) 水力发电生产成本低、效率高
- (七) 不污染环境
- 3) 总结提升、寻根溯源"悟"(5分钟)

通过水电站电能生产过程及特点探讨,鼓励学生积极投身国家水 电建设中,将新工程技术应用到水电建设。课程讲解融入杰出校友为 我国水电行业作出的贡献等内容,激发学生投身水电行业的使命感

- 4) 巩固练习、课堂评价(5分钟) 打开学习互动平台,完成课堂练习题
- 3. 作业巩固、拓展强化 搜集丰满电站,分组汇报。